$q_{SP} \cdot C_S - q_{SL} \cdot C_S + q_{LS} \cdot C_L + q_{PS} \cdot C_P$) $HFR_S = \frac{D_{IV}}{AUC_{IV} \cdot BW}$

Noninvasive Cholate Challenge (HepQuant DuO™) for Primary Sclerosing Cholangitis

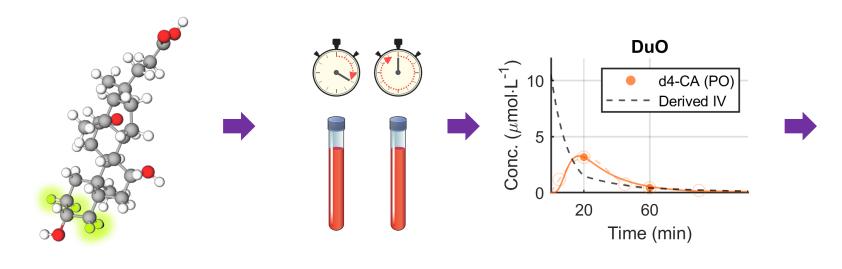
Gregory T. Everson, MD

PSC Forum November 6, 2025

Disclosures

- Dr. Gregory T. Everson, MD, is an Emeritus Professor of Medicine at the University of Colorado School of Medicine and Chief Executive Officer of HepQuant LLC.
- Dr. Everson is the inventor of the HepQuant technology, founder of HepQuant LLC, and holds intellectual property rights to HepQuant technology. He is a paid employee of HepQuant LLC.

Test Administration


The HepQuant DuO Test

Oral dose of d4-cholate

Two blood draws at 20 & 60 min

Measure cholate clearance by LC-MS/MS

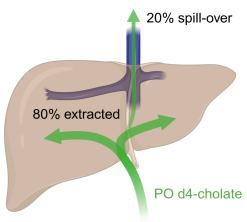
Measures of Liver Health

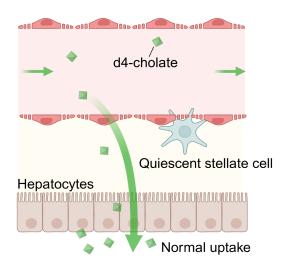
Disease Severity Index (DSI)

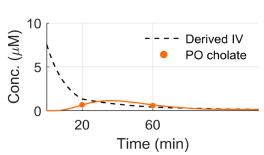
Hepatic Filtration Rates SHUNT%

Hepatic Reserve

RISK ACE



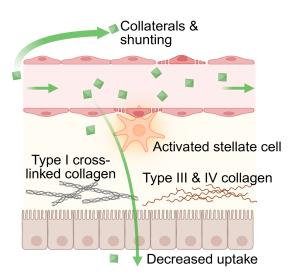

What Hepatic Functions and Physiology are Assessed?

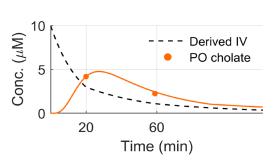


The d4-Cholate Measured in the Peripheral Venous Blood samples is that which is not cleared by Flow-dependent delivery to and liver-specific uptake by Hepatocytes

Normal Function

> As PSC progresses there is an increase:


- [d4-CA] in peripheral venous blood
- **❖** DSI
- **❖** SHUNT%


> And, decrease in:

- Hepatic Filtration
 Rate
- Hepatic Reserve (HR%)

Hepatic impairment

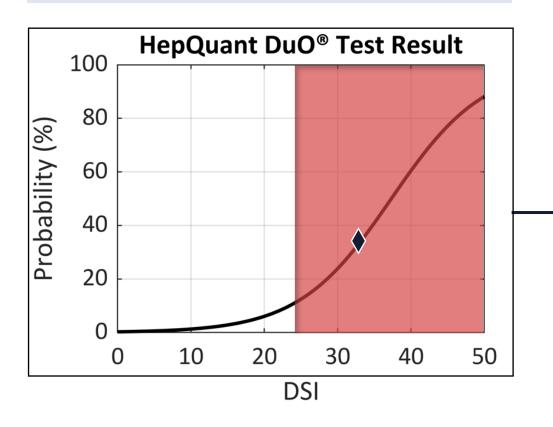
Unique Attributes of Unconjugated d4-Cholate

Unconjugated Cholate in PSC (drink and draw)

- Intestinal Absorption 100% absorbed from the upper small bowel natural endogenous compound, no radioactivity, no xenobiotic exposure
 - May be used in patients with IBD
 - Terminal ileal disease or IBAT therapies not likely to affect absorption
 - In our PSC study, 70% had IBD test predicted varices risk and clinical outcome
- Hepatic Uptake multiple pathways, not dependent on energy or Na cotransport passive, facilitated diffusion, OATPs, NTCP unlikely affected by SNP mutations
 - Early stage cholestasis uptake of ⁷⁵Se-homocholic acid preserved despite reduced excretion
 - Uptake of cholate more reflective of severity of disease (function/physiology)
 - Oral administration is more sensitive than IV injection in detecting change due to disease
- Gastric Emptying not absorbed from stomach drugs that slow gastric emptying (e.g. GLP-1 agonists, narcotics) or bind bile acids (e.g. cholestyramine) must be held

Illustrative Case

Defining Disease Severity to Aid the Transplant Decision


48 yo patient with PSC and bacterial cholangitis treated w antibiotics and stricture dilation. BMI 22.3.

MELD: 11. AST: 164; ALT: 132; T.Bili: 2.2; Albumin: 3.7;

Alk Phos: 513; GGT: 437. Prior EGDs - small varices.

HepQuant DuO ordered to quantify disease severity.

DSI 33.5 **35.3% risk for LEV** SHUNT 75.5%, HR 42.2%

Impact of HepQuant DuO

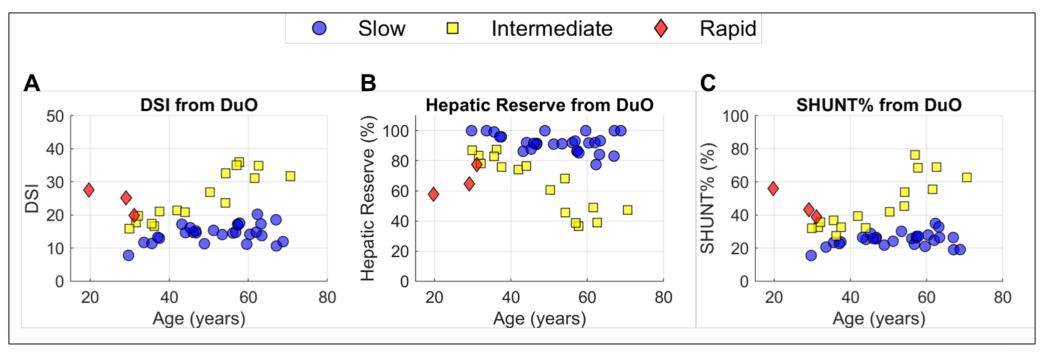
CARE PLAN: FORGO EGD

- DSI SHUNT% and HR suggest high risk for LEVs and portal hypertension, and support need for EGD.
- EGD showed LEV that were banded
- Based on HepQuant DuO results she has severe liver dysfunction despite low MELD score
- She was evaluated and underwent LDLT

PSC – the dual disease

- **Biliary** obstruction/infection stricture management
 - Anatomic measurements MRCP, LiverMultiScan MRCP+, ERCP, other
 - Additional imaging MRI, CT, US
- Hepatic decompensation liver transplantation
 - Standard laboratory tests, clinical models
 - Elastography gadexotate (MRI)
 - HepQuant tests SHUNT and DuO (portal-systemic shunt)

Key Findings from HepQuant's PSC Study



Helmke S, et al. The Oral Cholate Challenge Test Quantifies Risk for Liver-Related Clinical Outcomes in Primary Sclerosing Cholangitis. Gastro Hep Advances 2024;3:944-953.

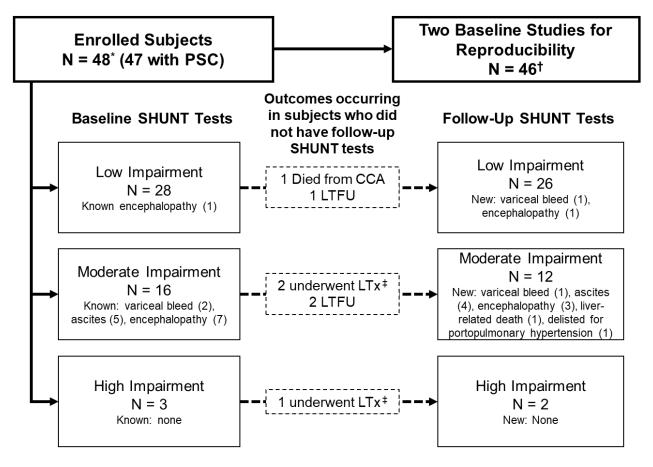
Progressor Category

Progressor Status – Functional Impairment by Age

Progressor Status				
Slow	0.28	ΔDSI / year		
Intermediate	0.53	ΔDSI / year		
Rapid	0.91	ΔDSI / year		
p < 0.001 for differences between groups by ANOVA				

HepQuant DuO Parameters in Intermediate/Rapid Progressors

Test Parameter	Slow Progressors (N=28)	Intermediate and Rapid Progressors (N=19)	p value
DuO			
SHUNT% (%)	25.02 ± 4.09	46.27 ± 14.73	<0.001
DSI	14.43 ± 2.73	25.01 ± 6.81	<0.001
Hepatic Reserve (%)	92.12 ± 6.03	64.74 ± 17.53	<0.001
Portal HFR (mL min ⁻¹ kg ⁻¹)	18.46 ± 4.79	8.18 ± 4.06	<0.001
Systemic HFR (mL min ⁻¹ kg ⁻¹)	4.45 ± 0.48	3.27 ± 0.87	<0.001

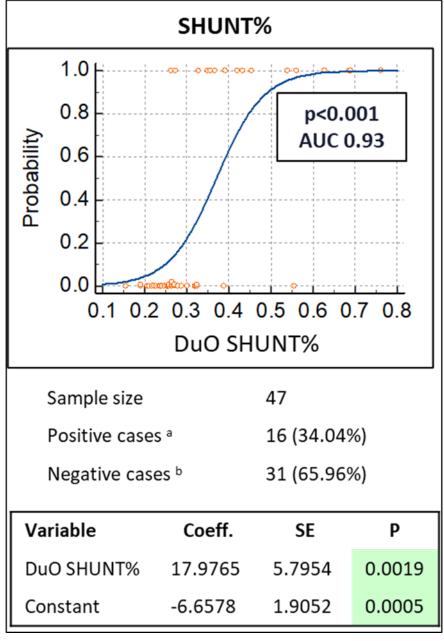


Intermediate/Rapid Progressors also showed significant Impairment in Standard Laboratory Tests and Clinical Scores

	Low Impairment (N=28)	Moderate/High Impairment (N=19)	Group t-test (p value)
HepQuant DuO			
SHUNT% (%)	25.02 ± 4.09	46.27 ± 14.73	<0.001
DSI	14.43 ± 2.73	25.01 ± 6.81	<0.001
Hepatic Reserve (%)	92.12 ± 6.03	64.74 ± 17.53	<0.001
Portal HFR (mL/min/kg)	18.46 ± 4.79	8.18 ± 4.06	<0.001
Systemic HFR (mL/min/kg)	4.45 ± 0.48	3.27 ± 0.87	<0.001
Lab Tests and Clinical Models			
Alkaline Phosphatase (IU/L)	128 ± 83	387 ± 353	0.0006
Bilirubin (mg/dL)	1.16 ± 0.46	2.99 ± 2.91	0.0023
Platelets (nL ⁻¹)	201 ± 78	160 ± 103	0.13
APRI	0.58 ± 0.31	1.92 ± 1.52	0.0001
FIB4	1.91 ± 1.16	4.05 ± 3.17	0.0029
MELD-Na Score	10.11 ± 2.39	13.58 ± 6.01	0.0074
≤ 10	26 (93%)	9 (47%)	-
11 to 15	1 (3.5%)	6 (32%)	-
> 15	1 (3.5%)	4 (21%)	-
Child-Pugh Score	5.25 ± 0.59	7.1 ± 1.8	<0.0001
Mayo PSC Risk Score	0.314 ± 0.517	1.313 ± 0.941	<0.0001

Study Flow Chart by Progressor Status

^{*}One of the 48 enrolled had primary biliary cholangitis and was excluded, leaving 47 subjects with primary sclerosing cholangitis (PSC).


[†] One PSC subject only had a single baseline test.

[‡]Liver transplantation (LTx) occurred after baseline testing but before their scheduled follow-up test.

Link to Clinical Outcome

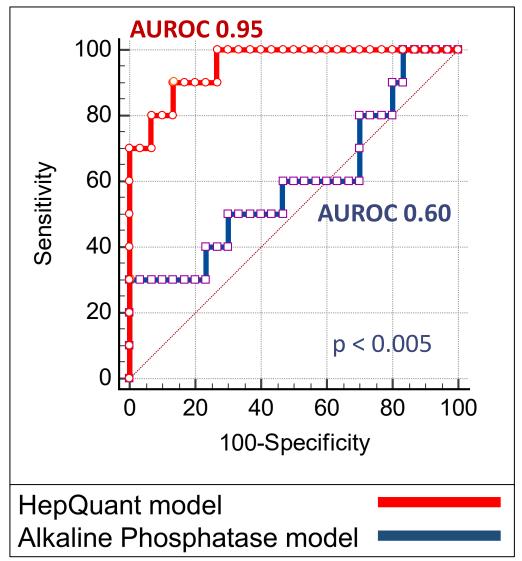
A Higher SHUNT% at Baseline was Associated with Greater Probability of Diagnosing Varices at Prior Endoscopy

A Higher SHUNT% at Baseline was Associated with Greater Probability of Future Clinical Outcome

Table 2. Diagnostic Performance of Baseline Tests (N = 47) in Prediction of Clinical Outcome by Univariate Logistic Regression in Terms of AUROC (95% CI)

	HepQuant SHUNT		HepQuant DuO	
Variable	AUROC	95% Cl ^a	AUROC	95% Cl ^a
SHUNT%	0.90	0.78-0.97	0.84	0.71-0.93
HFR _P	0.85	0.71-0.94	0.83	0.70-0.93
Hepatic reserve	0.84	0.71-0.93	0.83	0.69-0.93
DSI	0.83	0.69-0.92	0.83	0.69-0.92
Mayo	0.79	0.65-0.90	-	-
Alk. Phos.	0.75	0.60-0.87	-	-
RCA	0.73	0.58-0.85	0.80	0.66-0.90
FIB4	0.72	0.57-0.84	-	-
Bilirubin	0.70	0.55-0.82	-	-
CP	0.69	0.54-0.82	-	-
APRI	0.69	0.54-0.82	-	-
MELD	0.68	0.52-0.81	-	-
HFRs	0.66	0.51-0.79	0.78	0.64-0.89
PLT	0.60	0.43-0.74	-	-
^a Binomial exact				

Baseline Test Parameters: Comparison of Subjects Experiencing Clinical Outcome to Subjects who Remained Clinically Stable


	Patients who Experienced Clinical Outcomes (N=13)	Patients who Remained Clinically Stable (N=34)	Difference in the Means	95% CI	P ^a
SHUNT%	46.0% (16.6%)	28.9% (10.2%)	17.2%	9.1 to 25.1%	.0001
DSI	24.58 (7.54%)	16.46 (5.51%)	8.12	4.10 to 12.14	.0002
HR	65.9 (19.5%)	86.9 (13.8%)	-21.0	-31.19 to -10.78	.0001

Changes in SHUNT% and DSI Predict Risk for Clinical Outcome

(Change in Alkaline Phosphatase did not Predict Clinical Outcome)

	SHUNT% (%)			
	Baseline	Follow-up	ΔSHUNT%	
HepQuant DuO No clinical outcome (N = 30) Decomp, death, or transplant (N = 10) P value	28.9 ± 10.6 44.2 ± 16.5 .0016	29.2 ± 12.7 48.7 ± 17.5 .0005	0.2 ± 5.5 4.5 ± 9.9 .1000	
		DSI		
	Baseline	Follow-up	ΔDSI	
HepQuant DuO No clinical outcome (N = 30) Decomp, death, or transplant (N = 10) P value	16.5 ± 5.7 23.5 ± 7.6 .0036	16.1 ± 6.5 25.8 ± 7.9 . 0004	-0.4 ± 3.2 2.3 ± 4.2 .0417	

Summary

Summary of Key Findings with HepQuant DuO

- ➤ Identified Functional Progressor Subtypes linked to clinical outcome that could influence frequency of clinic visits, monitoring, or even selection for liver transplantation
- > Outperformed alkaline phosphatase in prediction of clinical outcome
- Defined baseline functional heterogeneity
- For drug developers, functional phenotyping may be useful to more precisely classify patient groups and reduce heterogeneity between treatment arms
- Within individual reproducibility was established
- > Further validation by inclusion in PSC trials is warranted

Joanne Imperial CMO Joanne.Imperial@hepquant.com

Bradley Everson
CBDO
Brad.Everson@hepquant.com